{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 6: Climate Oscillations" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This chapter delves into two of the most renowned climate oscillations: the El Niño-Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO). ENSO is an ocean-atmosphere oscillation in the tropical Pacific Ocean with a period spanning 2-7 years, while the NAO operates in the North Atlantic Ocean over a period of 5-10 years. Both these oscillations considerably influence the climate of nearby continents. In this chapter, we'll investigate how to formulate indices that represent the state of these climate oscillations. Additionally, we'll briefly delve into how one might identify teleconnections, using surface temperature teleconnections of ENSO as an illustrative example." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
Run the tutorial via free cloud platforms: | \n", "\n",
" | \n",
" \n",
" | \n",
" \n",
" | \n",
"
---|
<xarray.Dataset>\n", "Dimensions: (longitude: 1440, latitude: 721, time: 996)\n", "Coordinates:\n", " * longitude (longitude) float32 0.0 0.25 0.5 0.75 ... 359.0 359.2 359.5 359.8\n", " * latitude (latitude) float32 90.0 89.75 89.5 89.25 ... -89.5 -89.75 -90.0\n", " * time (time) datetime64[ns] 1940-01-01 1940-02-01 ... 2022-12-01\n", "Data variables:\n", " t2m (time, latitude, longitude) float32 dask.array<chunksize=(996, 150, 300), meta=np.ndarray>\n", " sst (time, latitude, longitude) float32 dask.array<chunksize=(996, 150, 300), meta=np.ndarray>\n", "Attributes:\n", " Conventions: CF-1.6\n", " history: 2023-09-11 17:33:49 GMT by grib_to_netcdf-2.25.1: /opt/ecmw...
<xarray.DataArray 'sst' (time: 996, lat: 721, lon: 1440)>\n", "dask.array<open_dataset-sst, shape=(996, 721, 1440), dtype=float32, chunksize=(996, 150, 300), chunktype=numpy.ndarray>\n", "Coordinates:\n", " * lon (lon) float32 0.0 0.25 0.5 0.75 1.0 ... 359.0 359.2 359.5 359.8\n", " * lat (lat) float32 90.0 89.75 89.5 89.25 ... -89.25 -89.5 -89.75 -90.0\n", " * time (time) datetime64[ns] 1940-01-01 1940-02-01 ... 2022-12-01\n", " month (time) int64 dask.array<chunksize=(996,), meta=np.ndarray>
<xarray.DataArray 'sst' (time: 996)>\n", "dask.array<truediv, shape=(996,), dtype=float32, chunksize=(996,), chunktype=numpy.ndarray>\n", "Coordinates:\n", " * time (time) datetime64[ns] 1940-01-01 1940-02-01 ... 2022-12-01\n", " month (time) int64 dask.array<chunksize=(996,), meta=np.ndarray>
<xarray.Dataset>\n", "Dimensions: (time: 19358, lat: 235, lon: 481)\n", "Coordinates:\n", " * time (time) datetime64[ns] 1970-01-01 1970-01-02 ... 2022-12-31\n", " realization int64 0\n", " plev float64 5e+04\n", " * lat (lat) float64 30.0 30.25 30.5 30.75 ... 87.75 88.0 88.25 88.5\n", " * lon (lon) float64 -80.0 -79.75 -79.5 -79.25 ... 39.5 39.75 40.0\n", "Data variables:\n", " z (time, lat, lon) float32 dask.array<chunksize=(31, 235, 481), meta=np.ndarray>\n", "Attributes:\n", " Conventions: CF-1.7\n", " institution: European Centre for Medium-Range Weather Forecasts\n", " history: 2023-09-13T15:03 GRIB to CDM+CF via cfgrib-0.9.9.1/ecCodes-...\n", " source: ECMWF
<xarray.DataArray 'z' (time: 19358, lat: 235, lon: 481)>\n", "dask.array<concatenate, shape=(19358, 235, 481), dtype=float32, chunksize=(31, 235, 481), chunktype=numpy.ndarray>\n", "Coordinates:\n", " * time (time) datetime64[ns] 1970-01-01 1970-01-02 ... 2022-12-31\n", " realization int64 0\n", " plev float64 5e+04\n", " * lat (lat) float64 30.0 30.25 30.5 30.75 ... 87.75 88.0 88.25 88.5\n", " * lon (lon) float64 -80.0 -79.75 -79.5 -79.25 ... 39.5 39.75 40.0\n", "Attributes:\n", " long_name: Geopotential\n", " units: m2 s-2\n", " standard_name: geopotential\n", " comment: Geopotential is the sum of the specific gravitati...\n", " cds_magics_style_name: turbo_1000_3000\n", " type: real
<xarray.DataArray 'z' (time: 6156, lat: 235, lon: 481)>\n", "dask.array<getitem, shape=(6156, 235, 481), dtype=float32, chunksize=(1, 235, 481), chunktype=numpy.ndarray>\n", "Coordinates:\n", " * time (time) datetime64[ns] 1980-01-01 1980-01-02 ... 2008-12-31\n", " realization (time) int64 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 0\n", " plev (time) float64 5e+04 5e+04 5e+04 5e+04 ... 5e+04 5e+04 5e+04\n", " * lat (lat) float64 30.0 30.25 30.5 30.75 ... 87.75 88.0 88.25 88.5\n", " * lon (lon) float64 -80.0 -79.75 -79.5 -79.25 ... 39.5 39.75 40.0\n", " dayofyear (time) int64 1 2 3 4 5 6 7 8 ... 360 361 362 363 364 365 366